Basalt fibers, advanced materials for various applications

Eythor R Thorhallsson, School of Science and Engineering

NordMin, information Day and Brokerage Event in Copenhagen, 13 November 2013
Basalt fibers
Advanced materials for various applications

Basalt fiber
Basalt roving
Basalt bar

Civil Engineering Laboratory sel.ru.is
BASALT FIBERS - MAIN ADVANTAGES

- tensile strength 20-25% higher than E-glass
- tensile modulus 15-20% higher than E-glass
- higher stiffness & strength in reinforced plastics
BASALT FIBERS - MAIN ADVANTAGES

- Higher mechanical properties and chemical resistance in both acid & alkali environment better than E glass
- Extended temperature range (up to 580°C)
- Environmental friendliness
- Easy recycling of Basalt Fiber Reinforced Plastics (BFRP) in comparison with GFRP
- Production cost of basalt-fibers is very low compared to other types of fibers.
- Basalt fiber properties significantly outperform E-glass and get close to specialty fibers like S-glass and carbon but at a lower price
GEOLOGICAL MAP OF THE NORTHEAST ATLANTIC REGION
SIMPLIFIED PRODUCTION PROCESS FOR BASALT FIBRE

1. sand silo
2. conveyor belt
3. batch charger
4. initial melting 1400-1600 C
5. precise melting, 1500° C
6. filament forming bushings
7. sizing applicator
8. strand formation
9. fibre tensioning
10. winding diameter 10-21 micron
Basalt-fibers in composite

- Basalt fibers have complex properties enabling them as replacement for asbestos, high strength glass, silica, chemical resistant glass and other special fibers in many applications.

- In a number of applications basalt fibers may be the best material due to unique combination of their physical and chemical properties.
BASALT FIBER BARS AS REINFORCEMENT

Non-corrosive reinforcement

High modulus of elasticity and excellent heat resistance

Bridge deck reinforced by Fiber bars

Civil Engineering Laboratory sel.ru.is
Renovation of concrete columns by wrapping basalt fiber sheets
STRENGTH OF COLUMNS

- **Peak axial force**
 - **Súla** F_c (kN)
 - CA0: 1129.5
 - CB0: 1076.7

- **Strain at peak stress**
 - **Súla** ε_c (%)
 - CA0: 0.346
 - CB0: 0.343

- **Ultimate axial force (confined)**
 - **Súla** F_{cc} (kN) F_{cc}/F_c
 - CA1: 971.2, 0.86
 - CB1: 1078.4, 1.0

- **Strain at ultimate stress**
 - **Súla** ε_{cu} (%) $\varepsilon_{cu}/\varepsilon_c$
 - CA1: 0.783, 2.26
 - CB1: 0.711, 2.07
STRENGTH OF COLUMNS

Ultimate axial force (confined)

<table>
<thead>
<tr>
<th>Súla</th>
<th>F_{cc} (kN)</th>
<th>F_{cc}/F_{c}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA2</td>
<td>1197,6</td>
<td>1,06</td>
</tr>
<tr>
<td>CB2</td>
<td>1497,2</td>
<td>1,39</td>
</tr>
</tbody>
</table>

Strain at ultimate stress

<table>
<thead>
<tr>
<th>Súla</th>
<th>ε_{cu} (%)</th>
<th>ε_{cu}/ε_{c1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA2</td>
<td>0,950</td>
<td>2,74</td>
</tr>
<tr>
<td>CB2</td>
<td>1,014</td>
<td>2,95</td>
</tr>
</tbody>
</table>

Ultimate axial force (confined)

<table>
<thead>
<tr>
<th>Súla</th>
<th>F_{cc} (kN)</th>
<th>F_{cc}/F_{c}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA3</td>
<td>1520,2</td>
<td>1,35</td>
</tr>
<tr>
<td>CB3</td>
<td>1527,3</td>
<td>1,42</td>
</tr>
</tbody>
</table>

Strain at ultimate stress

<table>
<thead>
<tr>
<th>Súla</th>
<th>ε_{cu} (%)</th>
<th>ε_{cu}/ε_{c1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA3</td>
<td>1,378</td>
<td>3,98</td>
</tr>
<tr>
<td>CB3</td>
<td>2,198</td>
<td>6,40</td>
</tr>
</tbody>
</table>
FIBERS IN COMPOSITE, SOME EXAMPLES