Tribological behaviour of carbon filled hybrid UHMWPE composites in water

Hari Shankar Vadivel, Arash Golchin, Nazanin Emami
Biotribology group, Division of Machine Elements,
Luleå University of Technology, Sweden
Introduction
Move towards water lubrication

• Water a better option than EALs (Environmentally Adapted Lubricants)
 • Non toxic, readily available (especially in aqueous envt.)

• Use of water as lubricant requires use of special materials for shafts, bearing, etc.
 • Prevalence of boundary lubrication

http://www.w-program.nu/filer/exjobb/Stina_%C3%A5strand.pdf
Introduction
Polymer Based Materials (PBMs)

• PBMs are good candidates for use in boundary lubricated conditions [1-3]
 – Thermoplastics
 – Can follow the substrate deformations
 – Self-lubricating property
 – PLA, PPS, PE, etc.

• Drawbacks
 – Viscoelastic deformation, water absorption
 – High wear rates

Improvement pathways

- Carbon based
 - CNTs
 - Graphene
- Metal particles
- Fibers

Process:
- Cross linking by radiation
- Fillers/composites
- Improvement pathways
- Vitamin E
- Polymer Blending
Hybrid/Multiscale Composites

• Combine both micro and nano reinforcements
 – Ability to functionalize the fillers, Possibility to tailor properties, synergistic effect.

• Micro and nano HA in UHMWPE combine to give better mechanical properties than either of them alone [10]

UHMWPE
Ultra High Molecular weight Polyethylene

• Semi crystalline thermoplastic polymer with Molecular weight usually between 2 and 6 million g/mol
 • High molecular weight imparts toughness

• Superior performance in load bearing systems where water and non oil based lubrication is used [4,5] and also in biomedical applications [7,8]

• Excellent low-speed performance of Rubber/UHMWPE alloy as material for marine stern tube bearings[6]

Research objectives

1. To design Multiscale composites based on UHMWPE
2. To experimentally investigate the synergistic effect of fillers on tribological performance and properties
Materials

<table>
<thead>
<tr>
<th>Particle</th>
<th>Average size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphene Oxide (GO)</td>
<td>Length/width 0.7 – 4 μm, Profile 0.7-1.2 nm</td>
</tr>
<tr>
<td>Nanodiamonds (ND)</td>
<td>Ø 5 nm</td>
</tr>
<tr>
<td>Short Carbon Fibers (SCF)</td>
<td>length 100 μm, Ø 7 μm</td>
</tr>
<tr>
<td>UHMWPE</td>
<td>Ø 30 μm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Designation</th>
<th>Composition (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GO</td>
</tr>
<tr>
<td>UHMWPE</td>
<td>Pure UHMWPE</td>
</tr>
<tr>
<td>0.5% GO</td>
<td>0.5</td>
</tr>
<tr>
<td>0.5% ND</td>
<td>-</td>
</tr>
<tr>
<td>10% SCF</td>
<td>-</td>
</tr>
<tr>
<td>GO + ND + SCF</td>
<td>0.5</td>
</tr>
<tr>
<td>GO + ND</td>
<td>0.5</td>
</tr>
<tr>
<td>GO + SCF</td>
<td>0.5</td>
</tr>
<tr>
<td>ND + SCF</td>
<td>-</td>
</tr>
<tr>
<td>1% GO</td>
<td>1</td>
</tr>
<tr>
<td>1% ND</td>
<td>-</td>
</tr>
</tbody>
</table>

Chukov et al., Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites, Composites Part B: Engineering, 76, 79-88, 2015
Manufacturing Process

Sonication in ethanol → UHMWPE + Filler → Ball Milling Dry/wet → Composite powder → Direct Compression Molding → Drying

Measurements and analyses

- Pin on disc tribo tests
 - Time: 20h
 - Sliding distance ~ 9400 m
 - Counter Surface: Inconel 625 discs
 - Load: 88 N
 - Contact pressure – 5 MPa
- SEM
- Wettability
- Thermal characterisation
 - DSC
 - TGA

![Diagram](image-url)
SEM

Unfilled UHMWPE-pre milling

Unfilled UHMWPE-post milling

GO + ND + SCF
Post milling
X ray Microtomography
• Reduction of μ with addition of GO and ND

• 140 μm PE + GO/ND showed higher FC [14,15]

• GO+ND+SCF displays low μ
 – 21% reduction compared to unfilled UHMWPE

Specific wear rate (SWR) of polymer composites

- Even though 10% SCF shows high μ, wear rate is not - SCF can protect the polymer from abrasion.

- Low value of GO+ND+SCF – 15% decrease from unfilled UHMWPE

- 140 μm UHMWPE+GO has higher wear rate [14]

Wear tracks

GO+UHMWPE

SCF+UHMWPE

ND+UHMWPE

GO + ND + SCF + UHMWPE
Wettability

- Hydrophobicity of UHMWPE is an important factor in low wear rate in metal-on-polymer contacts [19]
- All fillers used tend to increase hydrophobicity
- 11% increase in contact angle for GO+ND+SCF

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Sample</th>
<th>Mean Contact angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pure UHMWPE</td>
<td>81.4</td>
</tr>
<tr>
<td>2</td>
<td>0.5 wt% GO</td>
<td>82.6</td>
</tr>
<tr>
<td>3</td>
<td>1 wt% GO</td>
<td>85.9</td>
</tr>
<tr>
<td>4</td>
<td>0.5 wt% ND</td>
<td>89.3</td>
</tr>
<tr>
<td>5</td>
<td>1 wt% ND</td>
<td>86.8</td>
</tr>
<tr>
<td>6</td>
<td>10 wt% SCF</td>
<td>88.3</td>
</tr>
<tr>
<td>7</td>
<td>GO + ND + SCF</td>
<td>90.1</td>
</tr>
<tr>
<td>8</td>
<td>GO + ND</td>
<td>88</td>
</tr>
<tr>
<td>9</td>
<td>GO + SCF</td>
<td>90.4</td>
</tr>
<tr>
<td>10</td>
<td>ND + SCF</td>
<td>89.5</td>
</tr>
</tbody>
</table>

Contact angle vs. μ

- Higher the contact angle, lower the μ – as desired.
- GO+ND+SCF exhibits low wear and lowest μ with good hydrophobic nature.
Differential Scanning Calorimetry

• Crystallinity not affected by manufacturing process

• Similarly, no effect on melting point

• Note: Crystallinity was improved with the addition of small amount of GO and ND – act as nucleation centers [22,23]

• SCF inhibits chain formation[17]

Enqvist et al., Nanodiamond reinforced uhmwpe: a comparison of dry and wet ball milling manufacturing, Tribology - Materials, Surfaces & Interfaces Volume 8, Issue 1, 2014
Thermo-gravimetric analysis

Thermal stability of polymers

<table>
<thead>
<tr>
<th>Weight left</th>
<th>Label</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 %</td>
<td>T0</td>
<td>point just before any temperature changes start to occur</td>
</tr>
<tr>
<td>95 %</td>
<td>T1</td>
<td>temperature for maximum sample mass</td>
</tr>
<tr>
<td>90%</td>
<td>T2</td>
<td>end of the gradual weight loss</td>
</tr>
<tr>
<td>5%</td>
<td>T3</td>
<td>rapid degradation ends</td>
</tr>
<tr>
<td>≤ 1%</td>
<td>T4</td>
<td>sample has achieved complete decomposition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Composite</th>
<th>Temperature (°C) ± Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T0</td>
</tr>
<tr>
<td>UHMWPE</td>
<td>167±5.5</td>
</tr>
<tr>
<td>GO+ND+SCF</td>
<td>210±2.4</td>
</tr>
</tbody>
</table>

- Composite GO+ND+SCF has the most delayed temperature points
- Delayed oxidation and consequent degradation [18]

Concluding remarks

- Manufacturing process has been optimized.
- Use of smaller PE particles has a positive influence on performance and properties.
- Inclusion of fillers did not affect crystallinity.
- Thermal stability of polymer composites was improved.
- Hybrid composite has been prepared and shown to perform well. GO+ND+SCF has
 - good hydrophobic nature - 11% increase
 - low μ - 21% less than unfilled UHMWPE
 - low wear - 15% reduction compared to unfilled UHMWPE
Thank you
Contact: hari.vadivel@ltu.se
Luleå University of Technology

This project was carried out within TRIBOS master (European Master MSc. degree in tribology)
References

6. Hong-ling Qin, Xin-cong Zhou, Xin-ze Zhao, Jing-tang Xing, Zhi-ming Yan, A new rubber/UHMWPE alloy for water-lubricated stern bearings, Wear, Volume 328, 2015, Pages 257-261, ISSN 0043-1648,

11. Berman et al., 2015, Macroscale superlubricity enabled by graphene nanoscroll formation, Research, Vol 348 Issue 6239

16. Enqvist et al., Nanodiamond reinforced uhmwpe: a comparison of dry and wet ball milling manufacturing, Tribology - Materials, Surfaces & Interfaces Volume 8, Issue 1, 2014

