Modeling of moisture transport in wood below the fiber saturation point

J. Eitelberger, K. Hofstetter
Institute for Mechanics of Materials and Structures,
Vienna University of Technology

Schedule

• Basics of moisture transport in wood
 – Physical background
 – Formulation

• Homogenization of material properties
 – Thermal conduction, validation
 – Steady state diffusion, validation

• Modeling of transient transport processes
 – Implementation in FE-code

• Summary, outlook
Schedule

• Basics of moisture transport in wood
 – Physical background
 – Formulation
• Homogenization of material properties
 – Thermal conduction, validation
 – Steady state diffusion, validation
• Modeling of transient transport processes
 – Implementation in FE-code
• Summary, outlook

Processes on the microscale

Macroscopic description
Static conditions

Steady state conditions
Transient conditions

![Diagram showing transient conditions in wood drying](image)

- Lumen
- Cell wall
- Bound water
- Macroscopic disequilibrium

Sorption isotherms

![Graph of sorption isotherms](image)

- Equilibrium moisture content θ_e
- Water vapor concentration c_v [g/m3]

11th International IUFRO Wood Drying Conference 2010, Skellefteå
Formulation of transient transport processes

- 3 coupled macroscopic differential equations
 - Mass conservation for bound water
 \[\int_V \frac{dc_b}{dt} \, dV + \int_{S_{ch}} \mathbf{n} \cdot \mathbf{J}_b \, dS + \int_V \dot{\varepsilon} \, dV = 0 \]
 - Mass conservation for water vapor
 \[\int_V \frac{dc_v}{dt} \, dV + \int_{S_{sv}} \mathbf{n} \cdot \mathbf{J}_v \, dS + \int_V \dot{\varepsilon} \, dV = 0 \]
 - Energy conservation
 \[\int_V \rho_c \dot{\varepsilon} \, dV + \int_{S_T} \mathbf{n} \cdot \mathbf{f} \, dS + \int_{S_{th}} h_b \mathbf{n} \cdot \mathbf{J}_b \, dS + \int_{S_{sv}} (h_v - h_w) \mathbf{n} \cdot \mathbf{J}_v \, dS + \int_V (h_v - h_b) \dot{\varepsilon} \, dV = 0 \]

Schedule

- Basics of moisture transport in wood
 - Physical background
 - Formulation

- Homogenization of material properties
 - Thermal conduction, validation
 - Steady state diffusion, validation

- Modeling of transient transport processes
 - Implementation in FE-code

- Summary, outlook
Transport properties – homogenization scheme

Method:
Continuum micromechanics

Thermal conduction - results

* spruce
* pine
* larch
* balsa
* oak
* beech

T = ~ 27 °C
u = ~ 12 %
Steady state diffusion - validation

Spruce
0.404 g/cm³

radial

- 100 °C
- 80 °C
- 60 °C
- 40 °C

Schedule

- Basics of moisture transport in wood
 - Physical background
 - Formulation
- Homogenization of material properties
 - Thermal conduction, validation
 - Steady state diffusion, validation
- Modeling of transient transport processes
 - Implementation in FE-code
- Summary, outlook
Formulation of transient transport processes

• 3 coupled macroscopic differential equations

\[
\begin{align*}
\int \frac{d\rho}{dt} \, dV + \int \mathbf{n} \cdot \mathbf{J} \, dS + \int \hat{c} \, dV &= 0 \\
\int \frac{d\tau}{dt} \, dV + \int \mathbf{n} \cdot \mathbf{J} \, dS + \int \hat{c} \, dV &= 0 \\
\int \frac{dm_{H_2O}}{dt} \, dV + \int \mathbf{n} \cdot \mathbf{J} \, dS + \int (h_v - h_w) \mathbf{n} \cdot \mathbf{J} \, dS + \int (h_v - h_w) \hat{c} \, dV &= 0
\end{align*}
\]

→ finite element model

• sub-model of cell wall for the coupling term

→ one-dimensional finite difference model in each integration point of the finite element mode

Sub-model for the cell wall

[Diagram showing a sub-model for the cell wall with notation and labels for symmetry boundary condition and half cell wall thickness.]
Summary

• Physical background
 – Microscale processes – macroscopic description
 – Differences between steady state and transient transport processes

• Homogenization of material properties
 – Starting from sample-independent properties
 – Consideration of morphology and composition
 – Applicable to any wood species

• Modeling of transient transport processes
 – 3 solution variables, sub-model for cell wall
 – Finite element method
Thank you very much for your attention!