Splash lubrication simulation using CFD

Torbjörn Kvist
Manager Simulation & Testing
Vicura AB
torbjorn.kvist@vicura.se

Content

- Background
 - Why is splash lubrication simulation important?

- Method development and validation
 - Can we trust the results?

- Applications
 - How can the method be useful?

- Summary
 - What can the model do today and how can we improve it?
Background

- **Purpose of the lubrication system**
 - Provide adequate lubrication and cooling of important components, such as bearings, gear contacts, clutches, synchronizers, etc., ...
 - ... with minimum losses in the transmission.
- **Many transmissions work without a controlled, pressurized, lubrication system.** Instead they rely on splash lubrication where the oil flow is driven by the rotation of the gears and guided to important positions.
- **Splash lubrication is difficult to predict due to the chaotic nature of the flow.**
- **The transmission housing plays a major role in guiding the flow.**

Background

- **Development of the lubrication system is still done experimentally in rig tests.**
 - Measurement of flow to important positions.
 - Visualization of the flow by plastic housings.
- **Transmission housings are long-lead time items.**
 - Difficult to obtain feedback in early design stages when hardware is not available.
 - Difficult/expensive to introduce design changes once the hardware is in place.
Product Development Process

Front loaded math based development process, assuring low development cost and shortest leadtime

- Requirement driven, all parts and systems optimized towards their individual technical and functional requirements
- A math-based process assures a minimum need of development prototypes
- No order of prototypes prior confirmation that a part is meeting all requirements
- Low cost and Short lead time

Math-based development

<table>
<thead>
<tr>
<th>System</th>
<th>Requirement Breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsystem</td>
<td>Validation</td>
</tr>
<tr>
<td>Component</td>
<td>Gear mesh</td>
</tr>
<tr>
<td>Oil splash</td>
<td></td>
</tr>
<tr>
<td>Bearings & Seals</td>
<td></td>
</tr>
<tr>
<td>Synchronizer</td>
<td></td>
</tr>
</tbody>
</table>

Physics

\[
\frac{d^2\theta}{dt^2} + \frac{d\phi}{dt} \frac{d\theta}{dt} = \frac{1}{J} \left(\tau - \tau_0 - \tau_1 \right)
\]

\[
\frac{d\phi}{dt} \frac{d\theta}{dt} = \frac{1}{\tau} \left(\tau - \tau_0 - \tau_1 \right)
\]
Method development and validation
- Validation methodology

Problem reduction

Drag torque and oil flow Measurements

Flow Field Validation @Chalmers

Problem separation

Method development and validation
- Churning losses

- Churning loss was measured on single components:
 - Cylinder
 - Spur gear
 - Helical gear
- To understand influence of gear teeth.
- Losses can be predicted well
 - the major uncertainty is the effect of temperature since the thermal field is not included in the simulation.
Method development and validation
- Oil splashing behaviour

- Filming with high-speed camera shows that ...
 - splashing behind the gear
 - wetting of the gear
 - air bubbles between the teeth
 ... is captured well in the simulation.
- The simulation can capture the major features of the flow.

Method development and validation
- Flow field measurements

- PIV measurements show details about the flow
 - Velocity field (fluctuations and mean values)
 - Boundary layer profile

- Simulations give qualitatively good results.
Method development and validation
- Internal shaft flow

- Rig measurements of oil flow through a shaft were performed for various temperatures and rotational speed.
- The oil flow behaviour is predicted well.
- Important flow phenomena such as choking of the shaft is predicted.

Applications
- Minimization of losses
Applications
- Thermal effects

- Thermal effects can be accounted for by changing the global temperature of the oil.
- The function of the lubrication system can be evaluated at cold and warm conditions.
- The temperature field is not included in the simulation due to long simulation times.

Applications
- Lubrication system development
Applications
- Transmission housing design

Lubrication

Manufacturing

Structure & NVH

Topology optimization

1st-time-right Housing design!

Summary
A CFD method for splash lubrication has been developed and applied
- Transient two-phase flow (oil and air)
- Rotating geometries
- Complete transmissions can be simulated

The method is useful for
- Minimization of losses
 - Understanding geometrical effects
 - Minimize oil-level
- Lubrication system
 - Understanding oil-flow to components under different driving conditions (temperature, external forces, angle of inclination, ...)
 - Design collector system and compare alternative solutions

Future improvements
- Temperature field and heat transfer
- Meshing gears
- Additional component validation
 - Bearings
 - Clutches
 - Synchronizers
- Simulation time

The method is used today for Vicura’s customers

2011-11-09 16 Torbjörn Kvist
Thank you!

Movie

is_OS_of_quote_104.exe