Hans-åke Häggblad
Hans-åke Häggblad

Hans-åke Häggblad

Professor
Luleå tekniska universitet
Hållfasthetslära
Material- och solidmekanik
Institutionen för teknikvetenskap och matematik
Hans-Ake.Haggblad@ltu.se
0920-491048
E872 Luleå

Sammanfattning av arbetsuppgifter

Mitt huvudsakliga forskningsområde är Pulvermekanik. Materialmodelling och simulering av olika pulvertekniska processer och granulära material. Ett annat forskningsområde som jag aktivt forskar inom är Brottmodellering. Framförallt modeller för lokalisering, sprickinitiering och skadeutveckling.

Jag är för närvarande examinator för kurserna "Modeller inom solidmekaniken" samt "Flygplanshållfasthet", undervisar även i en del andra hållf-kurser.

Relaterade artiklar

Publikationer

Artikel i tidskrift

The particle finite element method for transient granular material flow (2020)

modelling and validation
Larsson. S, Rodriguez Prieto. J, Gustafsson. G, Häggblad. H, Jonsén. P
Computational Particle Mechanics
Konferensbidrag

A Novel Method for Modelling of Cold Cutting of Microstructurally Tailored Hot Formed Components (2019)

Jonsén. P, Svanberg. A, Ramirez. G, Casellas. D, Hernández. R, Marth. S, et al.
Ingår i: CHS² 2019 - 7th International Conference on Hot Sheet Metal Forming of High Performance Steel, 2019, s. 645-652, 2019
Konferensbidrag

Failure Modelling and Experimental Evaluation of a Press-Hardened Laboratory Scale Component with Multi-Phase Microstructure (2019)

Ingår i: /pth> International Conference on Hot Sheet Metal Forming of High Performance Steel, 2019

Hot stamping of boron alloyed steel has become a standard in the automotive industry for safety relevant body in white components. This process allows the design of complex geometries with superior mechanical properties. Special tool design enables to manufacture components with special properties based on varying microstructures in designated areas. This is a challenge for finite element (FE) simulations of deformation and failure for multi-phase microstructure components.

In the present work, a laboratory scale test component with multi-phase microstructure is studied from blank to fractured component. Using different tool temperatures and adding an air-cooling step before transfer to the press hardening tool, the microstructure of the component is varied. By this, components with four different multi-phase microstructures are produced. These components are tested under tensile deformation until fracture, where force, elongation and the strain field on the components surface are measured.

<

The laboratory scale test component is evaluated using FE-modelling. The complete production process is modelled starting with the pre-cut austenitized blank, subsequent transfer, air-cooling, forming operation, and the final post-cooling. The resulting multi-phase micro structures are evaluated using manual optical microscope image analysis and compared with the simulated phase composition. Furthermore, the deformation and fracture of the manufactured component under tensional loading is studied using a mean-field homogenization scheme for the multi-phase composition combined with the OPTUS failure model. This finite element investigation is conducted taking the microstructure composition, shape and thickness deviations from the forming simulation into account.

The present work shows the feasibility of modelling methods of the complete process chain for press-hardened components with multi-phase microstructures, from blank to fractured component.

, s. 39-50, 2019, B1
Konferensbidrag

DEM-CFD Simulation of the Effect of Air on Powder Flow During Die Filling (2018)

Larsson. S, Gustafsson. G, Jonsén. P, Häggblad. H
Paper presented at : 13th World Congress in Computational Mechanics
Artikel i tidskrift

Experimental and numerical study of potassium chloride flow using smoothed particle hydrodynamics (2018)

Larsson. S, Gustafsson. G, Häggblad. H, Jonsén. P
Minerals Engineering, Vol. 116, s. 88-100