Hoppa till innehållet

Pieter Baart (LTU)

Publicerad: 21 december 2009

Grease lubrication in radial lip seals

Rolling element bearings contain seals to keep lubricant inside and contamination outside the bearing system. These bearings are more often lubricated with grease rather than oil. Much knowledge is available on oil lubricated seals but a good understanding of grease lubricated seals is lacking.

In this thesis, first the lubrication, pumping and sealing mechanisms of oil and grease lubricated radial lip seals have been discussed. The first paper reviews the public literature. This review has shown that very little is known on grease lubrication in radial lip seals. The primary lubrication, sealing and pumping mechanisms found for oil lubricated seals are micro-elastohydrodynamic lubrication between the seal and shaft roughness and tangential deformations of the seal surface for a pumping action. These mechanisms are important but it is felt that other effects have to be included for explaining differences seen in grease lubricated radial lip seals.

One effect in grease lubrication is the normal stress effect which is described in the second paper. It is shown that the grease rheology and especially the normal stress effect play a significant role in film formation in grease lubricated seals. The model predicts that 50 to 60% of the load carrying capacity can be generated by the normal stress effect for a low contact pressure bearing seal depending on the operating conditions.

The oil bleed model presented in the third paper describes the release of oil from the grease. This model is based on viscous flow through the porous soap microstructure and the driving force is the pressure gradient resulting from centripetal forces. It is shown that the soap fibre distribution has to become anisotropic during oil bleed and the model has been validated with experiments at different temperatures and rotating speeds. The model can be used with good confidence for longer periods of time and can be used as input for replenishment models.

Läs avhandlingen